Separation of NP-Completeness Notions
نویسندگان
چکیده
We use hypotheses of structural complexity theory to separate various NP-completeness notions. In particular, we introduce an hypothesis from which we describe a set in NP that is T-complete but not P tt -complete. We provide fairly thorough analyses of the hypotheses that we introduce.
منابع مشابه
Bi-Immunity Separates Strong NP-Completeness Notions
We prove that if for some ǫ > 0, NP contains a set that is DTIME(2n ǫ )-bi-immune, then NP contains a set that is 2-Turing complete for NP (hence 3-truth-table complete) but not 1-truth-table complete for NP. Thus this hypothesis implies a strong separation of completeness notions for NP. Lutz and Mayordomo [LM96] and Ambos-Spies and Bentzien [ASB00] previously obtained the same consequence usi...
متن کاملCook Versus Karp-Levin: Separating Completeness Notions if NP Is not Small (Extended Abstract)
Under the hypothesis that NP does not have p-measure 0 (roughly, that NP contains more than a negligible subset of exponential time), it is show n that there is a language that is P T -complete (\Cook complete"), but not P m -complete (\Karp-Levin complete"), for NP. This conclusion, widely believed to be true, is not known to follow from P 6= NP or other traditional complexity-theoretic hypoth...
متن کاملOn the separation of split cuts and related inequalities
The split cuts of Cook, Kannan and Schrijver are general-purpose valid inequalities for integer programming which include a variety of other well-known cuts as special cases. To detect violated split cuts, one has to solve the associated separation problem. The complexity of split cut separation was recently cited as an open problem by Cornuéjols & Li [10]. In this paper we settle this question...
متن کاملDISTINGUISHABILITY AND COMPLETENESS OF CRISP DETERMINISTIC FUZZY AUTOMATA
In this paper, we introduce and study notions like state-\linebreak distinguishability, input-distinguishability and output completeness of states of a crisp deterministic fuzzy automaton. We show that for each crisp deterministic fuzzy automaton there corresponds a unique (up to isomorphism), equivalent distinguished crisp deterministic fuzzy automaton. Finally, we introduce two axioms related...
متن کاملOn the membership problem for the {0, 1/2}-closure
In integer programming, {0, 1/2}-cuts are Gomory–Chvátal cuts that can be derived from the original linear system by using coefficients of value 0 or 1/2 only. The separation problem for {0, 1/2}-cuts is strongly NP-hard. We show that separation remains strongly NP-hard, even when all integer variables are binary. © 2011 Elsevier B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Comput.
دوره 31 شماره
صفحات -
تاریخ انتشار 2001